

Materialien für OLEDs: Synthese, Druck und Anwendung

Martin Hager, Ulrich S. Schubert

Lehrstuhl für Organische und Makromolekulare Chemie Friedrich-Schiller-Universität Jena Laboratory of Macromolecular Chemistry and Nanoscience Eindhoven University of Technology & Dutch Polymer Institute (DPI) E-Mail: m.hager@tue.nl; ulrich.schubert@uni-jena.de Internet: http://www.schubert-group.com

TU/e Overview

OLED

metal electrode			
		← +	
			ITO
₩	₩	₩	electrode

Synthesis

Inkjet printing

Application - device

TU/e Why iridium?

- phosphorescence with relatively short lifetimes (few μ s)
- high quantum yields

Ŏ

ligands tune emission

Adv. Mater. 2005, 17, 1109.

- metal-to-ligand based emission
- ability to change emission color
- can trap singlet excitones from fluorescent host molecules

• air-stable

- \rightarrow result in LEDs with maximum quantum efficiency, high stability, brightness and quick response on color-changes
- \rightarrow aim for solution processable iridium(III) complexes

ligands with polymers/polymerizable group

2.) **acac**, sodium carbonate, nitrogen, room temperature, 30 h cyclometalated Ir(III) acetoacetate

complex

iridium(III)-complex with photo-polymerizable group

TU/e Iridium-containing polymers

polymers with iridium(III)-complexes as end-groups

iridium(III)-complexes are processable → film of the polymer

TU/e Printing functional materials

Inkjet deposition of polymers & materials

Data transfer

Dosing of lubricants (www.microdrop.de)

Biochip fabrication (www.gesim.de)

Acetophenone

Multicolor pLED displays Courtesey of Philips Research

Inkjet printed all-polymer TFT Plasticlogic / Univ. Cambridge

PMMA/Acetophenone (Mw 606 kD), 0.4% wt

PMMA/Acetophenone (Mw 1256 kD), 0.4% wt

TU/e Inkjet printing 1

Microdrop-Autodrop Platform

Adv. Mater. 2004, 16, 203; J. Mater. Chem. 2004, 14, 2627; Soft Matter 2008, in press.

TU/e Inkjet printing 2

I - Piezo move outwards

II - Negative waves travel outwards

III - Waves reflect and one reverses

IV - Waves arrive at centre when piezo contracts

V - Wave is magnified and drop ejected

Advantages (compared to spin-coating):

- Small amounts of solution
- less solution is wasted
- > printing of defined areas

microdrop TECHNOLOGIES

Macromol. Rapid. Comm. 2003, 17, 2349; Macromol. Rapid. Comm. 2004, 25, 292.

TU/e Optimization of thin films

TU/e Inkjet printing of the iridium polymer

1000

800

600

400

200

ſ

30

60

Thickness (nm)

polymer solutions

correlation of the number of printed drops with thickness and of thickness with emission

 N_{drop}/mm^2

90

120

150

180

increasing thickness

Macromol. Rapid Commun. 2005, 26, 293.

TU/e Inkjet printing of conjugated polymers

J. Mater. Chem. 2006, 16, 4294; Adv. Funct. Mater. 2007, 17, 277.

Increasing thickness from ~50 nm to ~150 nm

printed polymer films for potential application in OLEDs

Solvent : 90% toluene - 10% dichlorobenzene, Printed area: 6 x 6 mm Velocity: 15 mm/s, Voltage: 74 V, Pulse width: 45 µs

- 1: $R^1 = H$, $R^2 = octyloxy$, $R^3 = octadecyloxy$, (Mn = 50,000)
- 2: $R^1 = H$, $R^2 = octadecyloxy$, $R^3 = octyloxy$, (Mn = 38,400)
- 3: $R^1 = H$, $R^2 = octadecyloxy$, $R^3 = heptyloxy$, (Mn = 41,000)
- 4: $R^1 = H$, $R^2 = octadecyloxy$, $R^3 = decyloxy$, (Mn = 43,200)
- 5: $R^1 = H$, R^2 = octadecyloxy, R^3 =dodecyloxy, (Mn = 10,200)
- 6: $R^1 = H, R^2 = R^3 = dodecyloxy, (Mn = 25,600)$

TU/e Cadmiumtelluride nanoparticles

Nanoparticle libraries including different amount of PVA (Mw: 31-50,000 g/mol, 99% hydrolyzed). Films were printed from water on heated substrates (75 °C). Dot spacing: 0.08 mm

TU/e Iridium complex based OLED I

TU/e Iridium complex based OLED 2

electroluminescence

Best device: 18.4 cd/A Max. power efficiency [lm/W] performance @ 100 cd/m² 18.4 cd/A @ 5V @1000 cd/m² 15 cd/A @ 8V

Cooperation with K. Meerholz, Universität Köln: Adv. Mater. 2008, 20, 129.

TU/e Conclusions

The pathway to OLEDS

- Functionalization of iridium(III)-complexes with polymerizable groups
- > endfunctionalization of polymers with iridium(III)-complexes
- > printing of polymers containing iridium(III)-complexes
- > printing of CdTe-nanoparticles
- > printing of conjugated polymers
- > device containing photocrosslinkable iridium-complex

TU/e Acknowledgement

Info`s under http://www.schubert-group.com

Dr. V. Marin, Dr. E. Tekin, C. Ulbricht, PD Dr. D. A. M. Egbe, Prof. E. Holder Prof. K. Meerholz and group, Prof. U. S. Schubert

Thüringer Kultusministerium

TU/e Iridium complex based OLED III

Supporting information

substrate: ITO-coated glass

electron-transporting material: PBD

ligand: coumarine-type

 \cap