novaled 🎨

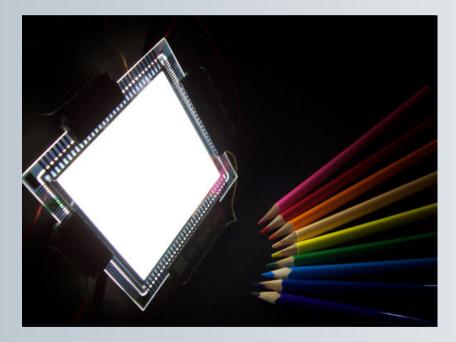
» The New OLED Generation «

»The New OLED Generation «

Technology for Innovative OLED Applications

Jan Blochwitz-Nimoth, CTO jan.blochwitz-nimoth@novaled.com

at Innovationsforum ,OLED Beleuchtung', Jena, February 2008



Outline

- > Introduction OLED and Novaled PIN technology[™]
- > White OLEDs
- > OLED Demonstrators
- > Outlook An OLED lighting Roadmap

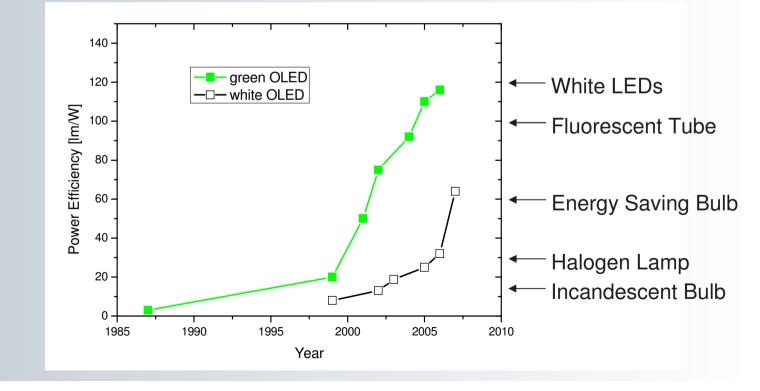
OLED – an area light source we've been looking for

OLED is an area source of light

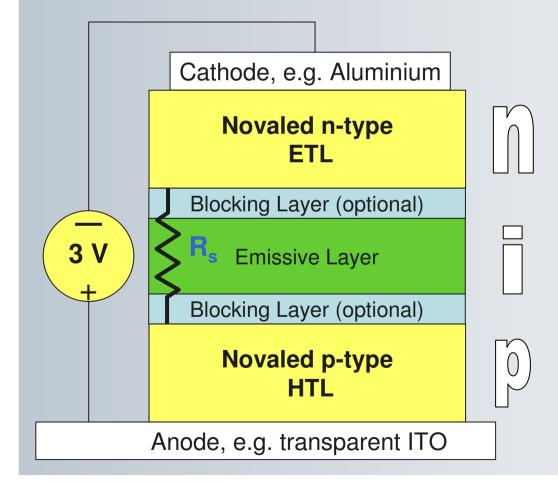
> Lighting:

OLED (area source) competes with fluorescent bulbs (line source) and LED (point source)

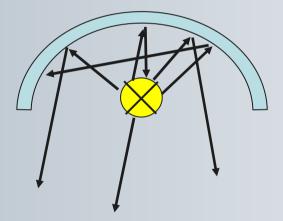
> Display:

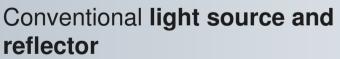

OLED (self emitter) competes with LCD (light manipulator)

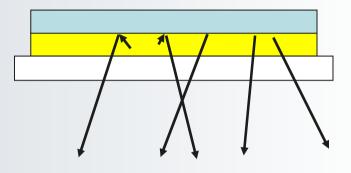
OLED Power Efficiency Development


Power efficiency =

Voltage (Novaled PIN-OLED technology[™]) Internal efficiency (singlet/triplet/PL) Out-coupling


Novaled – Low Voltage PIN OLED Technology[™]




- Novaled focuses on doping of the charge carrier transport layers → lowest voltages and highest efficiencies are reached – Novaled PIN OLED TechnologyTM
- PIN OLEDs allow for an easy integration and high design flexibility (e.g. transparent devices, OLED on metal foils...)
- PIN OLEDs can reach very high device lifetimes and improve system lifetimes

Wall - Plug Efficiency

OLED with **integrated reflector** (highly reflective metal electrode)

- → Integrated reflector gives rise to improved efficiencies!
- → Efficiencies of technologies have to be compared at system level!

Wall - Plug Efficiency

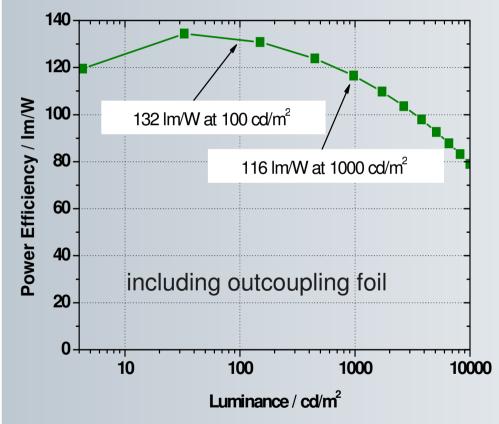
OLEDs:

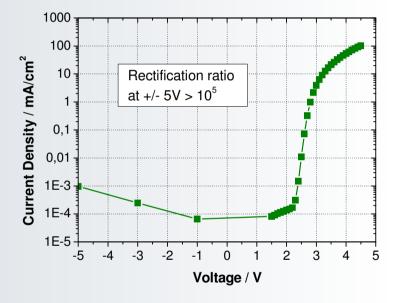
- Highly reflective electrode (e.g. Al, Ag) as internal reflector
- No luminaire needed
- Measured power efficiencies take only forward directed light into account

Values are close to final application efficiency

(under assumption scaling up is possible w/o loss of efficiency)

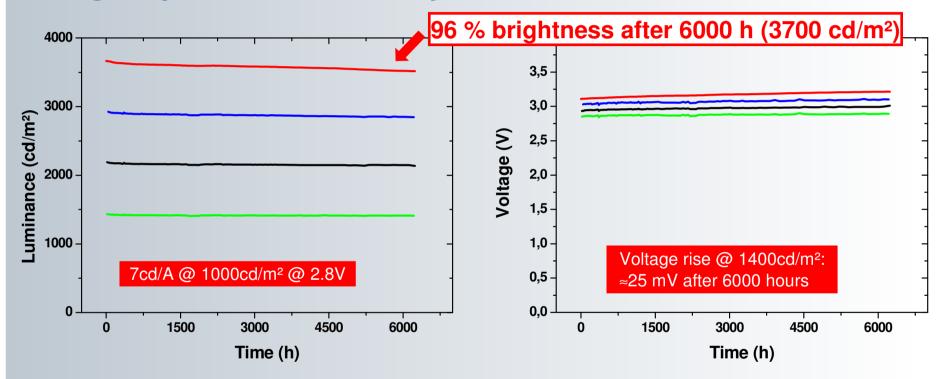
LEDs:


 According to DoE measurements LED luminaires reduce white LED efficiencies to 30 – 50 %


(LEDs Magazine February 2007, http://www.netl.doe.gov/ssl/comm_testing .htm)

Efficiency of LEDs is significantly reduced for area emitters

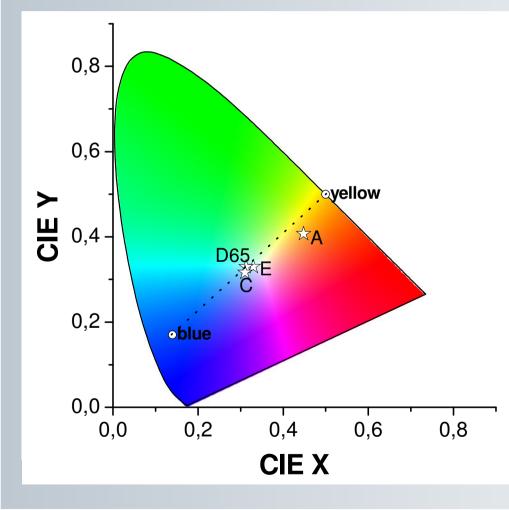
OLED Efficiency – Green Bottom Emission



- Phosphorescent emitter Ir(ppy)₃
 Bottom emission geometry
- > Record power efficiency

High Operational Stability: Red Bottom Emission PIN

- Red fluorescent bottom emission CC (0.67/0.33) [7 cd/A @ 1000 cd/m² @ 2.8V]
- Lifetime at 1000 cd/m²: > 1,000,000 hours at room temperature
- Voltage increase at 1400 cd/m²: 4 µV / h



Outline

- > Introduction OLED and Novaled PIN technology[™]
- > White OLEDs
- > OLED Demonstrators
- > Outlook An OLED lighting Roadmap

Color diagram

Color generation based on mixing monochrome emitter spectras

→ Emission color can be tuned between primary colors used (here 2-color white example)

- > Display white: around E
- Lighting white: region from color point A (yellowish) to C (white)

Application brightness

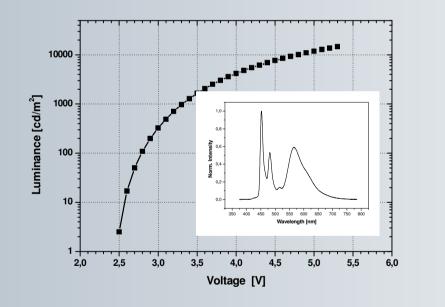
- Lighting 1000cd/m² to 4000cd/m²
- Display 1000cd/m² to 2000cd/m²

Main routes to create white light OLEDs

Focus on lifetime

- use singlet emitters
- > maybe: stacking for higher brightness
- > approx. 16lm/W (20lm/W with out-coupling) and >50kh lifetime achievable (Novaled, Kodak)
- For signage/display applications

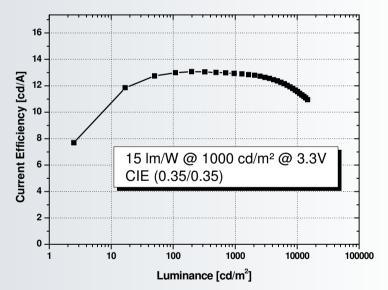
Combine power efficiency and lifetime


- hybrid emitters (blue singlet, red-green triplet)
- preferentially stacking
- > up to 35lm/W (incl. out-coupling) and 100kh lifetime demonstrated (Novaled)
- > For general illumination
- Focus on power efficiency
 - > all triplet emitter
 - > up to 64Im/W and 10kh lifetime shown (Konica-Minolta)
 - experimental status

Application driven OLED designs

•Bottom emission (on glass substrates), transparent OLEDs, top emission (on metal substrates)

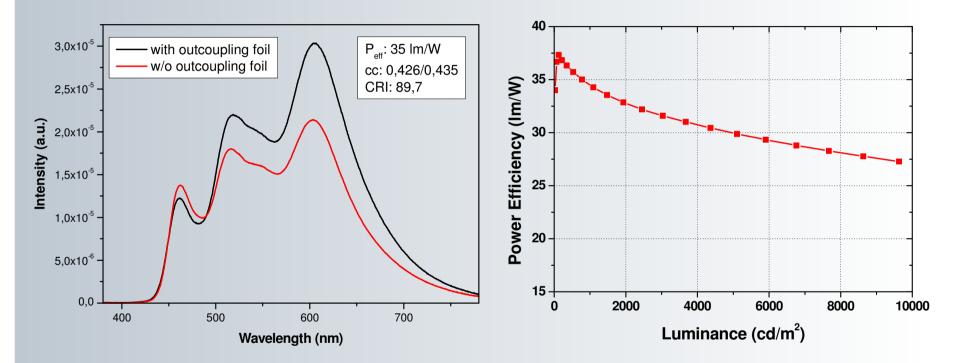
Display white – Longest Lifetime


White PIN OLED based on Kodak *fluorescent* emitter materials: Efficiency at 1000 cd/m²: 13 cd/A, 15 lm/W *; CIE: (0.35/0.35)

*measured in integrating sphere with outcoupling enhancement

Kodak

novaled 🍢


Lifetimes:

- such OLED structures achieve between 20.000h and 50.000h (5 years) at 1000cd/m²

» The New OLED Generation «

Stacked White – highest lifetime AND efficiency

- > High power efficiency: 35lm/W @ 1000cd/m²
- Long Lifetime: 100,000 hours at 1000 cd/m²
- > cc: 0.43/0.44 , CRI 90

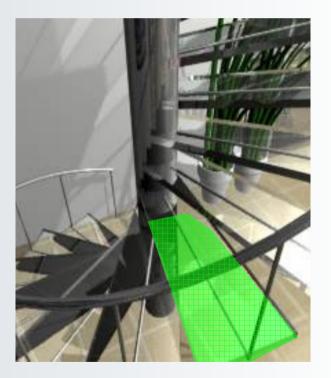
Outline

- > Introduction OLED and Novaled PIN technology[™]
- > White OLEDs
- > OLED Demonstrators
- > Outlook An OLED lighting Roadmap

» The New OLED Generation «

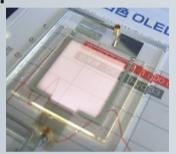
Market Penetration by Innovative OLED Lighting Solutions: Example

Headlight Demonstrator (Novaled/Automotive Lighting)


OLEDs used for parking light: flat, area source, good white, low power

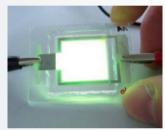
Future Innovative OLED Lighting Applications

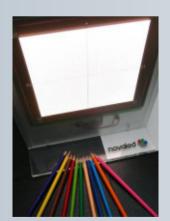
- > architecture
- indoor



PIN: Freedom of Device Architecture

Transparent PIN OLED





PIN OLED in headlight (with Magneto-Marelli)

PIN OLED on Printed ITO

(with Degussa)

PIN OLED for Lighting (with IPMS, Optrex)

stacked top & bottom emission inverted & non-inverted transparent

PIN AM OLED (with ITRI, Tomson)

PIN PM OLED (with Thomson)

PIN OLED on Steel Substrate (with Arcelor)

Outline

- > Introduction OLED and Novaled PIN technology[™]
- > White OLEDs
- > OLED Demonstrators
- > Outlook An OLED lighting Roadmap

How OLED Will Enter The Market

Short term:

 Niche applications for high price segment using unique design options

Mid term:

Flexible and transparent solutions for enhanced designs

Long term:

 Price competitive large area high efficiency light sources for general lighting

Market Entry Applications

- First products will be relatively high cost (~ 10-100 ct/cm²)
- Products will be non-transparent with one reflective electrode ("mirror effect")
- Devices will have an efficiency of 15 30 lm/W
- Applications will be small to medium size (~ 5 20 cm²)

Technological Evolution Of OLED

- Classic design (OLED on glass substrates) will be followed by:
 Flexible OLEDs on metal and plastic foils
 Transparent OLEDs
- > Total light output will grow via size and operation brightness
- Efficiencies of 75 150 lm/W will be reached
- OLED price per cm² (active area) will decline to 0,01 1 ct/cm²

Timeline

- Market entry for niche applications between 2008 and 2010
- Flexible and transparent solutions available from 2010 onwards
- Estimated efficiency & lifetime of mass production devices (partially from Photonics21 roadmap):
 - > 2010: 30-60 lm/W, 10.000-30.000 h
 > 2015: >100 lm/W, 50.000 100.000 h
 > 2025: > 150 lm/W, > 100.000 h

Summary

- Novaleds PIN OLED Technology[™] is a key to highest efficiencies and lifetimes in OLED
- SoA OLEDs reach lifetimes of up to 1 million hours; efficiencies of up to 116 lm/W (green) are reached
- White OLEDs for lighting with best combination of Lifetime and power efficiency reach 100kh and 35lm/W (all at 1000cd/m²)
- First products will be small to medium size and based on glass substrates
- Large area, flexible and transparent devices will mature in the next decade

Acknowledgement

Thanks to:

The Novaled team

and

- > IAPP (TU Dresden), FhG-IPMS, University of Kassel (Prof. Salbeck)
- > Philips Lighting/Philips Research
- Merck Organic Semiconductors, Germany
- › Kodak
- > UDC
- > EU-project OLLA

In financial funding: Free State of Saxony, European Union, BMBF.

» The New OLED Generation «

Thank you for your attention

Novaled AG Tatzberg 49 · 01307 Dresden Germany Phone: +49 351 796580 Fax: +49 351 7965829 **www.novaled.com**